
Communications System Toolbox™ 5
Getting Started Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Communications System Toolbox™ Getting Started Guide

© COPYRIGHT 2011 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 First printing New for Version 5.0 (Release 2011a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction

1
Communications System Toolbox Product Overview . . 1-2

Installing the Communications System Toolbox
Software and Documentation . 1-3
Installing the Communications System Toolbox
Software . 1-3

Installing Online Documentation . 1-3

Required Products . 1-4

Related Products . 1-5

Expected Background . 1-6
For New Users . 1-6
For Experienced Users . 1-6

Product Demos . 1-7
Demos in the Help Browser . 1-7
Demos on the Web . 1-7
Demos on MATLAB Central . 1-8

Accessing the Block Libraries . 1-9

System Simulation

2
Compute BER for a QAM System with AWGN and Phase
Noise Using Simulink . 2-2
Section Overview . 2-2

iii

Opening the Model . 2-2
Overview of the Model . 2-3
Quadrature Amplitude Modulation 2-4
Run a Simulation . 2-5
Display the Error Rate . 2-6
Set Block Parameters . 2-7
Display a Phase Noise Plot . 2-8
More Demos . 2-10

Compute BER for a QAM System with AWGN Using
MATLAB . 2-11
Section Overview . 2-11
Modulate a Random Signal . 2-11
Plot Signal Constellations . 2-18
Pulse Shaping Using a Raised Cosine Filter 2-24
Use a Convolutional Code . 2-29

System Objects

3
What Are System Objects? . 3-2
Create a System Object . 3-2
Change a System Object Property . 3-3
Run a System Object . 3-3
Display Available System Objects . 3-3

Set Up a System Object . 3-5
Create a New System Object . 3-5

Process Data with System Objects 3-9
What are System Object Methods? 3-9
The Step Method . 3-9
Common Methods . 3-9
Advantages of Using Methods . 3-11

What are System Object Locking and Property
Tunability? . 3-12
Understand System Object Modes . 3-12
Change Properties While Running System Objects 3-12

iv Contents

Change System Object Input Complexity or Dimensions . . 3-13

Find Help and Demos for System Objects 3-14
Use Help Commands . 3-14
Find Demos . 3-14

Use System Objects for Code Generation from
MATLAB . 3-15
Considerations for Using System Objects in Generated
Code . 3-15

Use System Objects with codegen . 3-18
Use System Objects with the MATLAB Function Block . . . 3-18

Index

v

vi Contents

1

Introduction

• “Communications System Toolbox Product Overview” on page 1-2

• “Installing the Communications System Toolbox Software and
Documentation” on page 1-3

• “Required Products” on page 1-4

• “Related Products” on page 1-5

• “Expected Background” on page 1-6

• “Product Demos” on page 1-7

• “Accessing the Block Libraries” on page 1-9

1 Introduction

Communications System Toolbox Product Overview
Communications System Toolbox™ provides algorithms and tools for
the design, simulation, and analysis of communications systems. These
capabilities are provided as MATLAB® functions, MATLAB System
objects, and Simulink® blocks. The system toolbox includes algorithms
for source coding, channel coding, interleaving, modulation, equalization,
synchronization, and channel modeling. Tools are provided for bit error rate
analysis, generating eye and constellation diagrams, and visualizing channel
characteristics. The system toolbox also provides adaptive algorithms that
let you model dynamic communications systems that use OFDM, OFDMA,
and MIMO techniques. Algorithms support fixed-point data arithmetic and
C or HDL code generation.

The key features of this product include:

• Algorithms available as MATLAB functions, MATLAB system objects,
and Simulink blocks

• Algorithms for designing the physical layer of communications systems,
including source coding, channel coding, interleaving, modulation, channel
models, equalization, and synchronization

• Visualization tools, including eye diagrams, constellations, and channel
scattering functions

• Graphical tool for comparing the bit error rate of a system with analytical
results

• Channel models, including AWGN, Multipath Rayleigh Fading, Rician
Fading, COST 207, GSM/EDGE, HF ionospheric, and MIMO

• Interactive tool for visualizing time-varying communications channels

• Basic RF impairments, including nonlinearity, phase noise, thermal noise,
and phase and frequency offsets

• Support for fixed-point modeling and C and HDL code generation

1-2

Installing the Communications System Toolbox™ Software and Documentation

Installing the Communications System Toolbox Software
and Documentation

Before you begin working, you must install the product on your computer.

Installing the Communications System Toolbox
Software
The Communications System Toolbox software follows the same installation
procedure as the MATLAB toolboxes. See the MATLAB installation
documentation for instructions.

Installing Online Documentation
Installing the documentation is part of the installation process:

• Installation from a DVD — Start the MathWorks® installer. When
prompted, select the Product check boxes for the products you want to
install. The documentation is installed along with the products.

• Installation from a Web download — If you update the Communications
System Toolbox software using a Web download and you want to view
the documentation with the MATLAB Help browser, you must install the
documentation on your hard drive.

Download the files from the Web. Then, start the installer, and select
the Product check boxes for the products you want to install. The
documentation is installed along with the products.

1-3

../../../base/install/install_product_page.html
../../../base/install/install_product_page.html

1 Introduction

Required Products
The Communications System Toolbox product is part of a family of MathWorks
products. You need to install several products to use this product. For more
information about the required products, see the MathWorks website, at
http://www.mathworks.com/products/commblockset/requirements.html.

1-4

http://www.mathworks.com/products/commblockset/requirements.html

Related Products

Related Products
MathWorks provides several products that are relevant to the kinds of tasks
you can perform with Communications System Toolbox software.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system

• The MathWorks Web site, at
http://www.mathworks.com/communications-systems/.

1-5

http://www.mathworks.com/communications-systems/

1 Introduction

Expected Background
This documentation assumes that you already have background knowledge in
the subject of communications. If you do not yet have this background, then
you can acquire it using a standard communications text or the books listed in
the Selected Bibliography subsections that appear in many topics.

For New Users
The discussion and examples in this chapter are aimed at new users.
Continue reading this chapter and try out the examples. Then read those
subsequent chapters that address the specific areas that concern you. When
you find out which functions you want to use, refer to the online reference
pages that describe those functions.

For Experienced Users
The online reference descriptions are probably the most relevant parts of this
guide for you. Each reference description includes the function’s syntax as
well as a complete explanation of its options and operation. Many reference
descriptions also include examples, a description of the function’s algorithm,
and references to additional reading material.

1-6

Product Demos

Product Demos

In this section...

“Demos in the Help Browser” on page 1-7

“Demos on the Web” on page 1-7

“Demos on MATLAB Central” on page 1-8

Demos in the Help Browser
You can find interactive Communications System Toolbox demos in the
MATLAB Help browser. This example shows you how to locate and open
some typical demos:

1 To open the Help browser, type doc at the MATLAB command line.

2 Expand the Communications System Toolbox node in the Help browser,
then the Demos node.

There are two entries under the Communications System Toolbox Demos
node:

• MATLAB Demos — Expand this entry to see a categorical list of
Communications System Toolbox demos that you can run in MATLAB.

• Simulink Demos — Expand this entry to see a categorical list of
block-based Communications System Toolbox demos that you can run
in Simulink.

You can find more demos for the Simulink software by typing demo at the
MATLAB command line.

Demos on the Web
The MathWorks Web site contains demos that show you how to use
Communications System Toolbox software. You can find these demos at
http://www.mathworks.com/communications-systems/demos.html.

You can view these demos without having MATLAB or the DSP System
Toolbox™ product installed on your system.

1-7

http://www.mathworks.com/communications-systems/demos.html

1 Introduction

Demos on MATLAB Central
MATLAB Central contains files, including demos, contributed by users and
developers of Communications System Toolbox, MATLAB, Simulink, and other
products. Contributors submit their files to one of a list of categories. You can
browse these categories to find submissions that pertain to Communications
System Toolbox software or a specific problem that you want to solve.
MATLAB Central is located at http://www.mathworks.com/matlabcentral/.

1-8

http://www.mathworks.com/matlabcentral/

Accessing the Block Libraries

Accessing the Block Libraries
To view the block libraries for the products you have installed, type simulink
at the MATLAB prompt (or click the Simulink button on the MATLAB
toolbar). The Simulink Library Browser appears.

Simulink Library Browser

The left pane displays the installed products, each of which has its own library
of blocks. To open a library, click the + sign next to the product name in the
left pane. This displays the contents of the library in the right pane.

You can find the blocks you need to build communications system models in
the Communications System Toolbox, DSP System Toolbox, and Simulink
libraries.

1-9

1 Introduction

1-10

2

System Simulation

• “Compute BER for a QAM System with AWGN and Phase Noise Using
Simulink” on page 2-2

• “Compute BER for a QAM System with AWGN Using MATLAB” on page
2-11

2 System Simulation

Compute BER for a QAM System with AWGN and Phase
Noise Using Simulink

In this section...

“Section Overview” on page 2-2

“Opening the Model” on page 2-2

“Overview of the Model” on page 2-3

“Quadrature Amplitude Modulation” on page 2-4

“Run a Simulation” on page 2-5

“Display the Error Rate” on page 2-6

“Set Block Parameters” on page 2-7

“Display a Phase Noise Plot” on page 2-8

“More Demos” on page 2-10

Section Overview
This section describes a demo model of a communications system that comes
with Communications System Toolbox software. The model displays a scatter
plot of a signal with added noise. The purpose of this section is to familiarize
you with the basics of Simulink models and how they function.

The section takes you through some key elements of working with this model.

Opening the Model
To open the model, first start MATLAB. In the MATLAB Command Window,
enter commphasenoise at the prompt. This opens the model in a new window,
as shown in the following figure.

2-2

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

Overview of the Model
The Simulink model shown in the preceding section, “Opening the Model”
on page 2-2, simulates the effect of phase noise on quadrature amplitude
modulation (QAM) of a signal. The Simulink model is a graphical
representation of a mathematical model of a communication system that
generates a random signal, modulates it using QAM, and adds noise to
simulate a channel. The model also contains components for displaying the
symbol error rate and a scatter plot of the modulated signal.

The blocks and lines in the Simulink model describe mathematical
relationships among signals and states:

• The Random Integer Generator block, labeled Random Integer, generates a
signal consisting of a sequence of random integers between zero and 255

• The Rectangular QAM Modulator Baseband block, to the right of the
Random Integer Generator block, modulates the signal using baseband
256-ary QAM.

• The AWGN Channel block models a noisy channel by adding white
Gaussian noise to the modulated signal.

2-3

2 System Simulation

• The Phase Noise block introduces noise in the angle of its complex input
signal.

• The Rectangular QAM Demodulator Baseband block, to the right of the
Phase Noise block, demodulates the signal.

In addition, the following blocks in the model help you interpret the
simulation:

• The Discrete-Time Scatter Plot Scope block, labeled AWGN plus Phase
Noise, displays a scatter plot of the signal with added noise.

• The Error Rate Calculation block counts symbols that differ between the
received signal and the transmitted signal.

• The Display block, at the far right of the model window, displays the
symbol error rate (SER), the total number of errors, and the total number
of symbols processed during the simulation.

All these blocks are included in Communications System Toolbox and
Simulink applications. You can find more detailed information about these
blocks by right-clicking the block and selecting Help from the context menu.

Quadrature Amplitude Modulation
This model simulates quadrature amplitude modulation (QAM), which is
a method for converting a digital signal to a complex signal. The model
modulates the signal onto a sequence of complex numbers that lie on a lattice
of points in the complex plane, called the constellation of the signal. The
constellation for baseband 256-ary QAM is shown in the following figure.

2-4

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

Constellation for 256-ary QAM

Run a Simulation
To run a simulation, select Simulation > Start from the top of the model
window. The simulation stops automatically at the Stop time, which is
specified in the Configuration Parameters dialog box. You can stop the
simulation at any time by selecting Stop from the Simulation menu at the
top of the model window (or, on Microsoft Windows, by clicking the Stop
button on the toolbar).

When you run the model, a new window appears, displaying a scatter plot of
the modulated signal with added noise, as shown in the following figure.

2-5

2 System Simulation

Scatter Plot of Signal Plus Noise

The points in the scatter plot do not lie exactly on the constellation shown in
the figure Constellation for 256-ary QAM on page 2-5 because of the added
noise. The radial pattern of points is due to the addition of phase noise, which
alters the angle of the complex modulated signal.

Display the Error Rate
The Display block displays the number of errors introduced by the channel
noise. When you run the simulation, three small boxes appear in the block,
as shown in the following figure, displaying the vector output from the Error
Rate Calculation block.

Error Rate Display

2-6

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

The block displays the output as follows:

• The first entry is the symbol error rate (SER).

• The second entry is the total number of errors.

• The third entry is the total number of comparisons made. The notation
1e+004 is shorthand for 104.

Set Block Parameters
You can control the way a Simulink block functions by setting its parameters.
To view or change a block’s parameters, double-click the block. This opens a
dialog box, sometimes called the block’s mask. For example, the dialog box for
the Phase Noise block is shown in the following figure.

Dialog for the Phase Noise Block

To change the amount of phase noise, click in the Phase noise level
(dBc/Hz) field and enter a new value. Then click OK.

Alternatively, you can enter a variable name, such as phasenoise, in the
field. You can then set a value for that variable in the MATLAB Command
Window, for example by entering phasenoise = 2. Setting parameters in the
Command Window is convenient if you need to run multiple simulations with
different parameter values. See the section .

2-7

2 System Simulation

You can also change the amount of noise in the AWGN Channel block.
Double-click the block to open its dialog box, and change the value in the
Es/No parameter field. This changes the signal to noise ratio, in dB.
Decreasing the value of Es/No increases the noise level.

You can experiment with the model by changing these or other parameters
and then running a simulation. For example,

• Change Phase noise level (dBc/Hz) to -150 in the dialog box for the
Phase Noise block.

• Change Es/No to 100 in the dialog for the AWGN Channel block.

This removes nearly all noise from the model. When you now run a
simulation, the scatter plot appears as in the figure Constellation for 256-ary
QAM on page 2-5.

Display a Phase Noise Plot
Double-click the block labeled “Display Figure” at the bottom left of the model
window. This displays a plot showing the results of multiple simulations.

2-8

Compute BER for a QAM System with AWGN and Phase Noise Using Simulink®

BER Plot at Different Noise Levels

Each curve is a plot of bit error rate as a function of signal to noise ratio for a
fixed amount of phase noise.

You can create plots like this by running multiple simulations with different
values for the Phase noise level (dBc/Hz) and Es/No parameters. describes
how to do this with a MATLAB script, using variables for the parameters.

2-9

2 System Simulation

More Demos
You can find Communications System Toolbox demos in the MATLAB Help
browser. For more information, see “Demos in the Help Browser” on page 1-7
software by typing demo at the MATLAB command line.

2-10

Compute BER for a QAM System with AWGN Using MATLAB®

Compute BER for a QAM System with AWGN Using
MATLAB

In this section...

“Section Overview” on page 2-11

“Modulate a Random Signal” on page 2-11

“Plot Signal Constellations” on page 2-18

“Pulse Shaping Using a Raised Cosine Filter” on page 2-24

“Use a Convolutional Code” on page 2-29

Section Overview
Communications System Toolbox software implements a variety of
communications-related tasks. Many of the functions in the toolbox perform
computations associated with a particular component of a communication
system, such as a demodulator or equalizer. Other functions are designed
for visualization or analysis.

While the later chapters of this document discuss various features in more
depth, this section builds an example step-by-step to give you a first look at
the Communications System Toolbox software. This section also shows how
Communications System Toolbox functionalities build upon the computational
and visualization tools in the underlying MATLAB environment.

Modulate a Random Signal
This first example addresses the following problem:

Problem Process a binary data stream using a communication system that
consists of a baseband modulator, channel, and demodulator. Compute the
system’s bit error rate (BER). Also, display the transmitted and received
signals in a scatter plot.

2-11

2 System Simulation

The following table indicates the key tasks in solving the problem, along
with relevant Communications System Toolbox functions. The solution
arbitrarily chooses baseband 16-QAM (quadrature amplitude modulation) as
the modulation scheme and AWGN (additive white Gaussian noise) as the
channel model.

Task Function or Method

Generate a random binary data stream randint

Modulate using 16-QAM modulate method on
modem.qammod object

Add white Gaussian noise awgn

Create a scatter plot scatterplot

Demodulate using 16-QAM modulate method on
modem.qamdemod object

Compute the system’s BER biterr

Solution of Problem
The discussion below describes each step in more detail, introducing MATLAB
code along the way. To view all the code in one editor window, enter the
following in the MATLAB Command Window.

edit commdoc_mod

1. Generate a Random Binary Data Stream. The conventional format
for representing a signal in MATLAB is a vector or matrix. This example uses
the randint function to create a column vector that lists the successive values
of a binary data stream. The length of the binary data stream (that is, the
number of rows in the column vector) is arbitrarily set to 30,000.

Note The sampling times associated with the bits do not appear explicitly,
and MATLAB has no inherent notion of time. For the purpose of this example,
knowing only the values in the data stream is enough to solve the problem.

2-12

Compute BER for a QAM System with AWGN Using MATLAB®

The code below also creates a stem plot of a portion of the data stream,
showing the binary values. Your plot might look different because the
example uses random numbers. Notice the use of the colon (:) operator in
MATLAB to select a portion of the vector. For more information about this
syntax, see The Colon Operator in the MATLAB documentation set.

%% Setup
% Define parameters.
M = 16; % Size of signal constellation
k = log2(M); % Number of bits per symbol
n = 3e4; % Number of bits to process
nsamp = 1; % Oversampling rate
hMod = modem.qammod(M); % Create a 16-QAM modulator

%% Signal Source
% Create a binary data stream as a column vector.
x = randint(n,1); % Random binary data stream

% Plot first 40 bits in a stem plot.
stem(x(1:40),'filled');
title('Random Bits');
xlabel('Bit Index'); ylabel('Binary Value');

2-13

2 System Simulation

2. Prepare to Modulate. The modem.qammod object implements an M-ary
QAM modulator, M being 16 in this example. It is configured to receive
integers between 0 and 15 rather than 4-tuples of bits. Therefore, you must
preprocess the binary data stream x before using the modulate method of the
object. In particular, you arrange each 4-tuple of values from x across a row of
a matrix, using the reshape function in MATLAB, and then apply the bi2de
function to convert each 4-tuple to a corresponding integer. (The .' characters
after the reshape command form the unconjugated array transpose operator
in MATLAB. For more information about this and the similar ' operator, see
Reshaping a Matrix in the MATLAB documentation set.)

%% Bit-to-Symbol Mapping
% Convert the bits in x into k-bit symbols.
xsym = bi2de(reshape(x,k,length(x)/k).','left-msb');

%% Stem Plot of Symbols
% Plot first 10 symbols in a stem plot.
figure; % Create new figure window.

2-14

Compute BER for a QAM System with AWGN Using MATLAB®

stem(xsym(1:10));
title('Random Symbols');
xlabel('Symbol Index'); ylabel('Integer Value');

3. Modulate Using 16-QAM. Having defined xsym as a column vector
containing integers between 0 and 15, you can use the modulatemethod of the
modem.qammod object to modulate xsym using the baseband representation.
Recall that M is 16, the alphabet size.

%% Modulation
y = modulate(modem.qammod(M),xsym); % Modulate using 16-QAM.

The result is a complex column vector whose values are in the 16-point
QAM signal constellation. A later step in this example will show what the
constellation looks like.

To learn more about modulation functions, see . Also, note that the modulate
method of the modem.qammod object does not apply any pulse shaping. To
extend this example to use pulse shaping, see “Pulse Shaping Using a Raised

2-15

2 System Simulation

Cosine Filter” on page 2-24. For an example that uses rectangular pulse
shaping with PSK modulation, see basicsimdemo.

4. Add White Gaussian Noise. Applying the awgn function to the
modulated signal adds white Gaussian noise to it. The ratio of bit energy to
noise power spectral density, Eb/N0, is arbitrarily set at 10 dB.

The expression to convert this value to the corresponding signal-to-noise ratio
(SNR) involves k, the number of bits per symbol (which is 4 for 16-QAM), and
nsamp, the oversampling factor (which is 1 in this example). The factor k is
used to convert Eb/N0 to an equivalent Es/N0, which is the ratio of symbol
energy to noise power spectral density. The factor nsamp is used to convert
Es/N0 in the symbol rate bandwidth to an SNR in the sampling bandwidth.

Note The definitions of ytx and yrx and the nsamp term in the definition of
snr are not significant in this example so far, but will make it easier to extend
the example later to use pulse shaping.

%% Transmitted Signal
ytx = y;

%% Channel
% Send signal over an AWGN channel.
EbNo = 10; % In dB
snr = EbNo + 10*log10(k) - 10*log10(nsamp);
ynoisy = awgn(ytx,snr,'measured');

%% Received Signal
yrx = ynoisy;

To learn more about awgn and other channel functions, see .

5. Create a Scatter Plot. Applying the scatterplot function to the
transmitted and received signals shows what the signal constellation looks
like and how the noise distorts the signal. In the plot, the horizontal axis is
the in-phase component of the signal and the vertical axis is the quadrature
component. The code below also uses the title, legend, and axis functions
in MATLAB to customize the plot.

2-16

Compute BER for a QAM System with AWGN Using MATLAB®

%% Scatter Plot
% Create scatter plot of noisy signal and transmitted
% signal on the same axes.
h = scatterplot(yrx(1:nsamp*5e3),nsamp,0,'g.');
hold on;
scatterplot(ytx(1:5e3),1,0,'k*',h);
title('Received Signal');
legend('Received Signal','Signal Constellation');
axis([-5 5 -5 5]); % Set axis ranges.
hold off;

To learn more about scatterplot, see .

6. Demodulate Using 16-QAM. Applying the demodulate method of the
modem.qamdemod object to the received signal demodulates it. The result is a
column vector containing integers between 0 and 15.

%% Demodulation
% Demodulate signal using 16-QAM.

2-17

2 System Simulation

zsym = demodulate(modem.qamdemod(M),yrx);

7. Convert the Integer-Valued Signal to a Binary Signal. The previous
step produced zsym, a vector of integers. To obtain an equivalent binary signal,
use the de2bi function to convert each integer to a corresponding binary
4-tuple along a row of a matrix. Then use the reshape function to arrange all
the bits in a single column vector rather than a four-column matrix.

%% Symbol-to-Bit Mapping
% Undo the bit-to-symbol mapping performed earlier.
z = de2bi(zsym,'left-msb'); % Convert integers to bits.
% Convert z from a matrix to a vector.
z = reshape(z.',numel(z),1);

8. Compute the System’s BER. Applying the biterr function to the original
binary vector and to the binary vector from the demodulation step above
yields the number of bit errors and the bit error rate.

%% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate.
[number_of_errors,bit_error_rate] = biterr(x,z)

The statistics appear in the MATLAB Command Window. Your results might
vary because the example uses random numbers.

number_of_errors =

71

bit_error_rate =

0.0024

To learn more about biterr, see .

Plot Signal Constellations
The example in the previous section created a scatter plot from the modulated
signal. Although the plot showed the points in the QAM constellation, the plot

2-18

Compute BER for a QAM System with AWGN Using MATLAB®

did not indicate which integers between 0 and 15 the modulator mapped to a
given constellation point. This section addresses the following problem:

Problem Plot a 16-QAM signal constellation with annotations that indicate
the mapping from integers to constellation points.

The solution uses the scatterplot function to create the plot and the text
function in MATLAB to create the annotations.

Solution of Problem
To view a completed MATLAB file for this example, enter edit
commdoc_const in the MATLAB Command Window.

1. Find All Points in the 16-QAM Signal Constellation. The
Constellation property of the modem.qammod object contains all points in the
16-QAM signal constellation.

M = 16; % Number of points in constellation
h=modem.qammod(M); % Modulator object
mapping=h.SymbolMapping; % Symbol mapping vector
pt = h.Constellation; % Vector of all points in constellation

2. Plot the Signal Constellation. The scatterplot function plots the
points in pt.

% Plot the constellation.
scatterplot(pt);

2-19

2 System Simulation

3. Annotate the Plot to Indicate the Mapping. To annotate the plot to
show the relationship between mapping and pt, use the text function to place
a number in the plot beside each constellation point. The coordinates of the
annotation are near the real and imaginary parts of the constellation point,
but slightly offset to avoid overlap. The text of the annotation comes from
the binary representation of mapping. (The dec2bin function in MATLAB
produces a string of digit characters, while the de2bi function used in the last
section produces a vector of numbers.)

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

2-20

Compute BER for a QAM System with AWGN Using MATLAB®

Binary-Coded 16-QAM Signal Constellation

Examine the Plot
In the plot above, notice that 0001 and 0010 correspond to adjacent
constellation points on the left side of the diagram. Because these
binary representations differ by two bits, the adjacency indicates that the
modem.qammod object did not use a Gray-coded signal constellation. (That is, if
it were a Gray-coded signal constellation, then the annotations for each pair
of adjacent points would differ by one bit.)

By contrast, the constellation below is one example of a Gray-coded 16-QAM
signal constellation.

2-21

2 System Simulation

Gray-Coded 16-QAM Signal Constellation

The only difference, compared to the previous example, is that you configure
modem.qammod object to use a Gray-coded constellation.

%% Modified Plot, With Gray Coding
M = 16; % Number of points in constellation
h = modem.qammod('M',M,'SymbolOrder','Gray'); % Modulator object
mapping = h.SymbolMapping; % Symbol mapping vector
pt = h.Constellation; % Vector of all points in constellation

scatterplot(pt); % Plot the constellation.

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.%% Modified Pl
M = 16; % Number of points in constellation
h = modem.qammod('M',M,'SymbolOrder','Gray'); % Modulator object
mapping = h.SymbolMapping; % Symbol mapping vector

2-22

Compute BER for a QAM System with AWGN Using MATLAB®

pt = h.Constellation; % Vector of all points in constellation

scatterplot(pt); % Plot the constellation.

% Include text annotations that number the points.
text(real(pt)+0.1,imag(pt),dec2bin(mapping));
axis([-4 4 -4 4]); % Change axis so all labels fit in plot.

2-23

2 System Simulation

Pulse Shaping Using a Raised Cosine Filter
This section further extends the example by addressing the following problem:

Problem Modify the Gray-coded modulation example so that it uses a pair
of square root raised cosine filters to perform pulse shaping and matched
filtering at the transmitter and receiver, respectively.

The solution uses the rcosine function to design the square root raised cosine
filter and the rcosflt function to filter the signals. Alternatively, you can
use the rcosflt function to perform both tasks in one command; see or the
rcosdemo demonstration for more details.

Solution of Problem
This solution modifies the code from commdoc_gray.m. To view the original
code in an editor window, enter the following command in the MATLAB
Command Window.

edit commdoc_gray

To view a completed MATLAB file for this example, enter edit commdoc_rrc
in the MATLAB Command Window.

1. Define Filter-Related Parameters. In the Setup section of the example,
replace the definition of the oversampling rate, nsamp, with the following.

nsamp = 4; % Oversampling rate

Also, define other key parameters related to the filter by inserting the
following after the Modulation section of the example and before the
Transmitted signal section.

%% Filter Definition
% Define filter-related parameters.
filtorder = 40; % Filter order
delay = filtorder/(nsamp*2); % Group delay (# of input samples)
rolloff = 0.25; % Rolloff factor of filter

2-24

Compute BER for a QAM System with AWGN Using MATLAB®

2. Create a Square Root Raised Cosine Filter. To design the filter and
plot its impulse response, insert the following commands after the commands
you added in the previous step.

% Create a square root raised cosine filter.
rrcfilter = rcosine(1,nsamp,'fir/sqrt',rolloff,delay);

% Plot impulse response.
figure; impz(rrcfilter,1);

3. Filter the Modulated Signal. To filter the modulated signal, replace the
Transmitted Signal section with following.

%% Transmitted Signal
% Upsample and apply square root raised cosine filter.
ytx = rcosflt(y,1,nsamp,'filter',rrcfilter);

% Create eye diagram for part of filtered signal.
eyediagram(ytx(1:2000),nsamp*2);

2-25

2 System Simulation

The rcosflt command internally upsamples the modulated signal, y, by a
factor of nsamp, pads the upsampled signal with zeros at the end to flush the
filter at the end of the filtering operation, and then applies the filter.

The eyediagram command creates an eye diagram for part of the filtered
noiseless signal. This diagram illustrates the effect of the pulse shaping. Note
that the signal shows significant intersymbol interference (ISI) because the
filter is a square root raised cosine filter, not a full raised cosine filter.

To learn more about eyediagram, see .

2-26

Compute BER for a QAM System with AWGN Using MATLAB®

4. Filter the Received Signal. To filter the received signal, replace the
Received Signal section with the following.

%% Received Signal
% Filter received signal using square root raised cosine filter.
yrx = rcosflt(ynoisy,1,nsamp,'Fs/filter',rrcfilter);
yrx = downsample(yrx,nsamp); % Downsample.
yrx = yrx(2*delay+1:end-2*delay); % Account for delay.

These commands apply the same square root raised cosine filter that the
transmitter used earlier, and then downsample the result by a factor of nsamp.

The last command removes the first 2*delay symbols and the last 2*delay
symbols in the downsampled signal because they represent the cumulative
delay of the two filtering operations. Now yrx, which is the input to the
demodulator, and y, which is the output from the modulator, have the same
vector size. In the part of the example that computes the bit error rate, it is
important to compare two vectors that have the same size.

5. Adjust the Scatter Plot. For variety in this example, make the scatter
plot show the received signal before and after the filtering operation. To do
this, replace the Scatter Plot section of the example with the following.

%% Scatter Plot
% Create scatter plot of received signal before and
% after filtering.
h = scatterplot(sqrt(nsamp)*ynoisy(1:nsamp*5e3),nsamp,0,'g.');
hold on;
scatterplot(yrx(1:5e3),1,0,'kx',h);
title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');
axis([-5 5 -5 5]); % Set axis ranges.

Notice that the first scatterplot command scales ynoisy by sqrt(nsamp)
when plotting. This is because the filtering operation changes the signal’s
power.

2-27

2 System Simulation

2-28

Compute BER for a QAM System with AWGN Using MATLAB®

Use a Convolutional Code
This section further extends the example by addressing the following problem:

Problem Modify the previous example so that it includes convolutional
coding and decoding, given the constraint lengths and generator polynomials
of the convolutional code.

The solution uses the convenc and vitdec functions to perform encoding
and decoding, respectively. It also uses the poly2trellis function to define
a trellis that represents a convolutional encoder. To learn more about these
functions, see .

See also vitsimdemo for an example of convolutional coding and decoding.

Solution of Problem
This solution modifies the code from “Pulse Shaping Using a Raised Cosine
Filter” on page 2-24. To view the original code in an editor window, enter the
following command in the MATLAB Command Window.

edit commdoc_rrc

To view a completed MATLAB file for this example, enter edit commdoc_code
in the MATLAB Command Window.

1. Increase the Number of Symbols. Convolutional coding at this value
of EbNo reduces the BER markedly. As a result, accumulating enough errors
to compute a reliable BER requires you to process more symbols. In the Setup
section, replace the definition of the number of bits, n, with the following.

n = 5e5; % Number of bits to process

Note The larger number of bits in this example causes it to take a noticeably
longer time to run compared to the examples in previous sections.

2-29

2 System Simulation

2. Encode the Binary Data. To encode the binary data before mapping it to
integers for modulation, insert the following after the Signal Source section
of the example and before the Bit-to-Symbol Mapping section.

%% Encoder
% Define a convolutional coding trellis and use it
% to encode the binary data.
t = poly2trellis([5 4],[23 35 0; 0 5 13]); % Trellis
code = convenc(x,t); % Encode.
coderate = 2/3;

The poly2trellis command defines the trellis that represents the
convolutional code that convenc uses for encoding the binary vector, x. The
two input arguments in the poly2trellis command indicate the constraint
length and generator polynomials, respectively, of the code. A diagram
showing this encoder is in .

3. Apply the Bit-to-Symbol Mapping to the Encoded Signal. The
bit-to-symbol mapping must apply to the encoded signal, code, not the original
uncoded data. Replace the first definition of xsym (within the Bit-to-Symbol
Mapping section) with the following.

% B. Do ordinary binary-to-decimal mapping.
xsym = bi2de(reshape(code,k,length(code)/k).','left-msb');

Recall that k is 4, the number of bits per symbol in 16-QAM.

4. Account for Code Rate When Defining SNR. Converting from Eb/N0 to
the signal-to-noise ratio requires you to account for the number of information
bits per symbol. Previously, each symbol corresponded to k bits. Now, each
symbol corresponds to k*coderate information bits. More concretely, three
symbols correspond to 12 coded bits in 16-QAM, which correspond to 8
uncoded (information) bits, so the ratio of symbols to information bits is 8/3
= 4*(2/3) = k*coderate.

Therefore, change the definition of snr (within the Channel section) to the
following.

snr = EbNo + 10*log10(k*coderate)-10*log10(nsamp);

2-30

Compute BER for a QAM System with AWGN Using MATLAB®

5. Decode the Convolutional Code. To decode the convolutional
code before computing the error rate, insert the following after the entire
Symbol-to-Bit Mapping section and just before the BER Computation
section.

%% Decoder
% Decode the convolutional code.
tb = 16; % Traceback length for decoding
z = vitdec(z,t,tb,'cont','hard'); % Decode.

The syntax for the vitdec function instructs it to use hard decisions. The
'cont' argument instructs it to use a mode designed for maintaining
continuity when you invoke the function repeatedly (as in a loop). Although
this example does not use a loop, the 'cont' mode is used for the purpose of
illustrating how to compensate for the delay in this decoding operation. The
delay is discussed further in “More About Delays” on page 2-32.

6. Account for Delay When Computing BER. The continuous operation
mode of the Viterbi decoder incurs a delay whose duration in bits equals the
traceback length, tb, times the number of input streams to the encoder. For
this rate 2/3 code, the encoder has two input streams, so the delay is 2*tb bits.

As a result, the first 2*tb bits in the decoded vector, z, are just zeros. When
computing the bit error rate, you should ignore the first 2*tb bits in z and the
last 2*tb bits in the original vector, x. If you do not compensate for the delay,
then the BER computation is meaningless because it compares two vectors
that do not truly correspond to each other.

Therefore, replace the BER Computation section with the following.

%% BER Computation
% Compare x and z to obtain the number of errors and
% the bit error rate. Take the decoding delay into account.
decdelay = 2*tb; % Decoder delay, in bits
[number_of_errors,bit_error_rate] = ...

biterr(x(1:end-decdelay),z(decdelay+1:end))

2-31

2 System Simulation

More About Delays
The decoding operation in this example incurs a delay, which means that
the output of the decoder lags the input. Timing information does not
appear explicitly in the example, and the duration of the delay depends
on the specific operations being performed. Delays occur in various
communications-related operations, including convolutional decoding,
convolutional interleaving/deinterleaving, equalization, and filtering. To find
out the duration of the delay caused by specific functions or operations, refer
to the specific documentation for those functions or operations. For example:

• The vitdec reference page

• “Delays of Convolutional Interleavers”

• “Fading Channels”

2-32

3

System Objects

• “What Are System Objects?” on page 3-2

• “Set Up a System Object” on page 3-5

• “Process Data with System Objects” on page 3-9

• “What are System Object Locking and Property Tunability?” on page 3-12

• “Find Help and Demos for System Objects” on page 3-14

• “Use System Objects for Code Generation from MATLAB” on page 3-15

3 System Objects

What Are System Objects?

In this section...

“Create a System Object” on page 3-2

“Change a System Object Property” on page 3-3

“Run a System Object” on page 3-3

“Display Available System Objects” on page 3-3

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

Note MATLAB® Compiler™ software supports System objects for use inside
MATLAB functions. The compiler product does not support System objects
for use in MATLAB scripts.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. System objects support fixed-point arithmetic
and C-code generation from MATLAB and Simulink. With System objects, you
can optionally generate code to target the desktop or external hardware. You
can use System objects in Simulink® models via the MATLAB Function block.

Note System objects do not support sparse matrices.

Create a System Object
To use System objects, you must first create an object. For example,

H = dsp.FFT % Create default FFT object, H

3-2

What Are System Objects?

% Create input data
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1024; % Length of signal
t = (0:L-1)*T % Time vector

% Sum of two sinusoids
X = 0.7*sin(2*pi*50*t.') + sin(2*pi*120*t.');

Change a System Object Property
To change the value of a property, use this format,

H.Normalize = true % Set the Normalize property

The property values of the FFT object, H, are displayed. In general, you
should set the object properties before you use the step method to run data
through the object.

Run a System Object
To execute a system object, use the step method.

Y = step(H,X); % Process input data, X

The output data from the step method is stored in Y, which, in this case,
is the FFT of X.

Display Available System Objects
To see a list of all the System objects for a particular package, type help
<packagename>. For example,

% DSP System Toolbox System objects
help dsp

% Computer Vision System Toolbox System objects
help vision

% Communications System Toolbox System objects

3-3

3 System Objects

help comm

To display help for specific objects, properties, or methods, see “Find Help and
Demos for System Objects” on page 3-14 .

3-4

Set Up a System Object

Set Up a System Object

Create a New System Object
You must create a System object before using it. You can create the object at
the MATLAB command line or within a program file. Your command-line code
and programs can pass MATLAB variables into and out of System objects.

For general information about working with MATLAB objects, see
Object-Oriented Programming in the MATLAB user documentation.

Syntax for Creating a System Object
The syntax for creating a System object, in this case, a digital filter object,
with default property values is:

H = dsp.DigitalFilter

where

• H is the handle to the object.

System objects are handle objects and follow handle semantics (e.g., when
you call a method using the handle, it affects the original object, not a copy
of that object). See “The Handle Superclass” for information on handle
objects. See “Value or Handle Class — Which to Use” in the MATLAB user
documentation for information on object handles.

• dsp is the package name for objects in the DSP System Toolbox product.
Packages are libraries of System objects.

Other package names are vision, which is in the Computer Vision System
Toolbox product, and comm, which is in the Communications System
Toolbox product.

• DigitalFilter is the object name.

Create Arrays of System Objects
You can create arrays that contain the same or different classes of System
objects. This is convenient for running methods on multiple objects
simultaneously. You can run only these methods on arrays of System objects.

3-5

3 System Objects

• clone

• getNumInputs

• getNumOutputs

• isLocked

• release

• reset

Note You cannot run the step method on an array of System objects.

This example shows the syntax you use to create an array of three System
objects.

hFilts = [dsp.CICDecimator,dsp.FIRDecimator,dsp.DigitalFilter];

Retreive System Object Property Values
System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a Name-Value pair. You can display the list of
relevant property names and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property
is not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handle>.<Name>.

Example. This example retrieves and displays the TransferFunction
property value for the previously created DigitalFilter object:

H.TransferFunction

Set System Object Property Values
You set the property values of a System object to model the desired algorithm.

3-6

Set Up a System Object

Note When you use Name-Value pair syntax, the object sets property values
in the order you list them. If you specify a dependent property value before its
parent property, an error or warning may occur.

Set Properties for a New System Object. To set a property when you
first create the object, use Name-Value pair syntax. For properties that
allow a specific set of string values, you can use tab completion to select from
a list of valid values.

H1 = dsp.DigitalFilter('CoefficientsSource','Input port')

where

• H1 is the handle to the object

• dsp is the package name

• DigitalFilter is the object name

• 'CoefficientsSource' is the property name

• 'Input port' is the property value

Set Properties for an Existing System Object. To set a property after you
have created an object, use either of the following syntaxes:

H1.CoefficientsSource = 'Property'

or

set(H1,'CoefficientsSource','Property')

Use Value-Only Inputs. Some object properties have no useful default
values or must be specified every time you create an object. For these
properties, you can specify only the value without specifying the corresponding
property name. If you use value-only inputs, those inputs must be in a specific
order, which is the same as the order in which the properties are displayed.
Refer to the object reference page for details. For example,

H2 = dsp.FIRDecimator(3,[1 .5 1])

3-7

3 System Objects

specifies the DecimationFactor as 3 and the Numerator as [1 .5 1].

3-8

Process Data with System Objects

Process Data with System Objects

In this section...

“What are System Object Methods?” on page 3-9

“The Step Method” on page 3-9

“Common Methods” on page 3-9

“Advantages of Using Methods” on page 3-11

What are System Object Methods?
After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
is <method>(<handle>), such as step(H).

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.
For more information about the step method and other available methods,
see the descriptions in “Common Methods” on page 3-9.

Common Methods
All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

3-9

3 System Objects

Method Description

step Processes data using the algorithm defined by the object.
As part of this processing, it initializes needed resources,
returns outputs, and updates the object states. After
you call the step method, you cannot change any input
specifications (i.e., dimensions, data type, complexity).
During execution, you can change only tunable properties.
The step method returns regular MATLAB variables.

Example: Y = step(H,X)

release Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks the
object. See “Understand System Object Modes” on page
3-12.

clone Creates another object with the same property values

isLocked Returns a logical value indicating whether the object is
locked. See “Understand System Object Modes” on page
3-12.

reset Resets the internal states of the object to the initial values
for that object

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached the
end of the data file. If a particular object does not have
end-of-data capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary
depending on the object. If a particular object does not
have characteristic information, the structure is empty.

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for
an object depending on whether any properties enable
additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

3-10

Process Data with System Objects

Advantages of Using Methods
System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable instances of an object, each with different settings. Using
this approach avoids repeated input validation and verification, allows for
easy use within a programming loop, and improves overall performance. In
contrast, MATLAB functions must validate parameters every time you call
the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

3-11

3 System Objects

What are System Object Locking and Property Tunability?

In this section...

“Understand System Object Modes” on page 3-12

“Change Properties While Running System Objects” on page 3-12

“Change System Object Input Complexity or Dimensions” on page 3-13

Understand System Object Modes
System objects are in one of two modes: unlocked or locked. After you create
an instance of an object and until it starts processing data, that object is in
unlocked mode. You can change any of its properties as desired.

The object initializes and locks when it begins processing data. The typical
way in which an object becomes locked is when the step method is called on
that object. To determine if an object is locked, use the isLocked method. To
unlock an object, use the release method. When the object is locked, you
cannot change any of the following:

• Number of inputs or outputs

• Data type

• Dimensions of inputs or tunable properties, except for System objects that
support variable-size data, where the input size can vary. See “What Is
Variable-Size Data?” for more information.)

• Value of any nontunable property

• Complexity of inputs from real to complex. (You can, however, change
input complexity from complex to real without unlocking the object.)

These restrictions allow the object to maintain states and allocate memory
appropriately.

Change Properties While Running System Objects
When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular

3-12

What are System Object Locking and Property Tunability?

System object property is tunable, see the corresponding reference page or
use a command of this form:

help dsp.FFT.Normalize

where

• dsp is the package name.

• FFT is the object name.

• Normalize is the property name.

For information on locked and unlocked modes, see “Understand System
Object Modes” on page 3-12.

Change System Object Input Complexity or
Dimensions
During simulations you can change an input’s complexity from complex to
real, but not from real to complex. You cannot change any input complexity
during code generation.

For objects that do not support variable-size input, if you change the input
dimensions while the object is in locked mode, the object produces a warning
and unlocks. The object then reinitializes the next time you call the step
method. See the object’s reference page for more information. You can change
the value of a tunable property and the input size without a warning or error
being produced. For all other changes at runtime, an error occurs.

3-13

3 System Objects

Find Help and Demos for System Objects

In this section...

“Use Help Commands” on page 3-14

“Find Demos” on page 3-14

Use Help Commands
Refer to the following resources for more information about System objects.

• Package help – help dsp, where dsp is a product package name

• Object help – help dsp.FFT, where FFT is the object name

• Documentation reference pages for an object – doc dsp.FFT

• Property help — help dsp.FFT.Normalize, where Normalize is the
property name.

• Fixed-point property help – dsp.FFT.helpFixedPoint, where
helpFixedPoint is the standard way to get fixed point property information
for any object.

• Method help – help dsp.FFT.step, where step is the method name.

Find Demos
To view demos, go to the Help contents for the associated product. Under
Demos, select MATLAB demos.

3-14

Use System Objects for Code Generation from MATLAB®

Use System Objects for Code Generation from MATLAB

In this section...

“Considerations for Using System Objects in Generated Code” on page 3-15

“Use System Objects with codegen” on page 3-18

“Use System Objects with the MATLAB Function Block” on page 3-18

Considerations for Using System Objects in
Generated Code
You can use System objects in code generated from MATLAB. To generate
code, you must also have the MATLAB® Coder™ product. Using this
product with System objects, you can generate efficient and compact code for
deployment in desktop and embedded systems and accelerate fixed-point
algorithms. System objects also support code generation using the MATLAB
Function block in Simulink and the MATLAB Coder codegen function.

For general information on generating code, see

• MATLAB Coder Getting Started Guide.

• Simulink® Coder™ User’s Guide

• Embedded Coder™ Getting Started Guide

The following example, which uses System objects, shows the key factors
to consider, such as using persistent variables, passing property values,
and extrinsic functions, when you make MATLAB code suitable for code
generation.

function lmssystemidentification
% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter
%#codegen

% Declare System objects as persistent.

persistent hlms hfilt;

3-15

3 System Objects

% Initialize persistent System objects only once
% Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.

if isempty(hlms)

% Create LMS adaptive filter used for system
% identification. Pass property value arguments
% as constructor arguments. Property values must
% be constants during compile time.

hlms = dsp.LMSFilter(11, 'StepSize', 0.01);

% Create system (an FIR filter) to be identified.

hfilt = dsp.DigitalFilter(...
'TransferFunction', 'FIR (all zeros)', ...
'Numerator', fir1(10, .25));

end

x = randn(1000,1); % Input signal
d = step(hfilt, x) + 0.01*randn(1000,1); % Desired signal
[~,~,w] = step(hlms, x, d); % Filter weights

% Declare functions called into MATLAB that do not generate
% code as extrinsic.

coder.extrinsic('stem');

stem([get(hfilt, 'Numerator').', w]);
end

% To compile this function use codegen lmssystemidentification.
% This produces a mex file with the same name in the current
% directory.

The following usage rules and limitations apply to using System objects in
code generated from MATLAB.

Usage Rules for System Objects in Generated MATLAB Code

3-16

Use System Objects for Code Generation from MATLAB®

• Assign System objects to persistent variables.

• Global variables are not supported. To avoid syncing global variables
between a MEX file and the workspace, use a compiler options object. For
example,

f = coder.MEXConfig;
f.GlobalSyncMethod='NoSync'

Then, include '-config f' in your codegen command.

• Initialize System objects once by embedding the object handles in an if
statement with a call to isempty().

• Call the constructor exactly once for any instance of a System object.

• Set arguments to System object constructors as compile-time constants.

• Use the object constructor to set System object properties because you
cannot use dot notation for code generation. You can use the get method
to display properties.

• Test your code in simulation before generating code.

Limitations on Using System Objects in Generated MATLAB Code

• Ensure that size, type and complexity of inputs do not change.

• Ensure that the value assigned to a nontunable or public property is
a constant and that there is at most one assignment to that property
(including the assignment in the constructor). Do not set any properties
during code generation.

• The only System object methods supported in code generation are

- get

- getNumInputs

- getNumOutputs

- isDone (for sources only)

- reset

- step

3-17

3 System Objects

• Do not set System objects to become outputs from the MATLAB Function
block.

• Do not pass a System object as an example input argument to a function
being compiled with codegen.

• Do not pass a System object to functions declared as extrinsic (i.e., functions
called in interpreted mode) using the coder.extrinsic function. Do not
return System objects from any extrinsic functions.

Use System Objects with codegen
You can include System objects in MATLAB code in the same way you
include any other elements. You can then compile a MEX file from your
MATLAB code by using the codegen command, which is available if you have
a MATLAB Coder license. This compilation process, which involves a number
of optimizations, is useful for accelerating simulations. See the MATLAB
Coder User’s Guide for more information.

Use System Objects with the MATLAB Function Block
Using the MATLAB Function block, you can include a MATLAB language
function in a Simulink model. This model can then generate embeddable
code. You can include any System object in the MATLAB Function block.
System objects provide higher-level algorithms for code generation than do
most associated blocks. For more information, see “Introduction to MATLAB
Function Blocks” in the Simulink documentation.

3-18

Index

IndexB
block libraries 1-9
block masks 2-7
block parameters 2-7

C
clone method 3-10
constellation 2-4
constellations

binary annotations 2-18
Gray-coded

square QAM 2-21
convolutional coding

adding to system 2-29

D
demos

Help browser 1-7
MATLAB® Central 1-8
Web 1-7

digital modulation
step-by-step example 2-11

documentation
installing 1-3

E
error rate

displaying 2-6
error-control coding

adding to system 2-29

G
getNumInputs method 3-10
getNumOutputs method 3-10

I
info method 3-10
installation

Communications System Toolbox 1-3
documentation 1-3

isDone method 3-10
isLocked method 3-10

L
Library Browser 1-9
locked vs. unlocked mode 3-12

M
MATLAB® Central

communications demos 1-8
modulation

digital
step-by-step example 2-11

P
property values 3-6
pulse shaping

sample code 2-24

Q
quadrature amplitude modulation (QAM) 2-4

R
raised cosine filters

sample code 2-24
release method 3-10
reset method 3-10
running simulations 2-5

Index-1

Index

S
signal constellations

binary annotations 2-18
Gray-coded

square QAM 2-21
simulations

running 2-5
Simulink libraries 1-9
Simulink Library Browser 1-9
step method 3-10
streaming data

using System objects 3-11
System object

clone method 3-10
creating an instance 3-5
description 3-2
getNumInputs method 3-10
getNumOutputs method 3-10
info method 3-10
isDone method 3-10
isLocked 3-10
locked vs. unlocked mode 3-12

methods 3-9
properties 3-6
property values 3-6
release method 3-10
reset method 3-10
step method 3-10
tunable property 3-12
using with MATLAB code generation 3-15
value-only input 3-7

T
tunable 3-12

V
value-only input 3-7

W
Web

demos 1-7

Index-2

	toc
	Introduction
	Communications System Toolbox Product Overview
	Installing the Communications System Toolbox Software and Docume
	Installing the Communications System Toolbox Software
	Installing Online Documentation

	Required Products
	Related Products
	Expected Background
	For New Users
	For Experienced Users

	Product Demos
	Demos in the Help Browser
	Demos on the Web
	Demos on MATLAB Central

	Accessing the Block Libraries

	System Simulation
	Compute BER for a QAM System with AWGN and Phase Noise Using Sim
	Section Overview
	Opening the Model
	Overview of the Model
	Quadrature Amplitude Modulation
	Run a Simulation
	Display the Error Rate
	Set Block Parameters
	Display a Phase Noise Plot
	More Demos

	Compute BER for a QAM System with AWGN Using MATLAB
	Section Overview
	Modulate a Random Signal
	Solution of Problem

	Plot Signal Constellations
	Solution of Problem
	Examine the Plot

	Pulse Shaping Using a Raised Cosine Filter
	Solution of Problem

	Use a Convolutional Code
	Solution of Problem
	More About Delays

	System Objects
	What Are System Objects?
	Create a System Object
	Change a System Object Property
	Run a System Object
	Display Available System Objects

	Set Up a System Object
	Create a New System Object
	Syntax for Creating a System Object
	Create Arrays of System Objects
	Retreive System Object Property Values
	Set System Object Property Values

	Process Data with System Objects
	What are System Object Methods?
	The Step Method
	Common Methods
	Advantages of Using Methods

	What are System Object Locking and Property Tunability?
	Understand System Object Modes
	Change Properties While Running System Objects
	Change System Object Input Complexity or Dimensions

	Find Help and Demos for System Objects
	Use Help Commands
	Find Demos

	Use System Objects for Code Generation from MATLAB
	Considerations for Using System Objects in Generated Code
	Use System Objects with codegen
	Use System Objects with the MATLAB Function Block

	Index

